Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1164822, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37867508

RESUMO

Background: Diabetic nephropathy (DN) is one of the most prevalent complications of diabetes mellitus (DM). However, there is still a lack of effective methods for non-invasive diagnosis of DN in clinical practice. We aimed to explore biomarkers from plasma cell-free DNA as a surrogate of renal biopsy for the differentiation of DN patients from patients with DM. Materials and methods: The plasma cell-free DNA (cfDNA) was sequenced from 53 healthy individuals, 53 patients with DM but without DN, and 71 patients with both DM and DN. Multidimensional features of plasma DNA were analyzed to dissect the cfDNA profile in the DM and DN patients and identify DN-specific cfDNA features. Finally, a classification model was constructed by integrating all informative cfDNA features to demonstrate the clinical utility in DN detection. Results: In comparison with the DM patients, the DN individuals exhibited significantly increased cfDNA concentration in plasma. The cfDNA from the DN patients showed a distinct fragmentation pattern with an altered size profile and preferred motifs that start with "CC" in the cfDNA ending sites, which were associated with deoxyribonuclease 1 like 3 (DNASE1L3) expression in the kidney. Moreover, patients with DM or DN were found to carry more alterations in whole-genome cfDNA coverage when compared with healthy individuals. We integrated DN-specific cfDNA features (cfDNA concentration, size, and motif) into a classification model, which achieved an area under the receiver operating characteristic curve (AUC) of 0.928 for the differentiation of DN patients from DM patients. Conclusion: Our findings showed plasma cfDNA as a reliable non-invasive biomarker for differentiating DN patients from DM patients. The utility of cfDNA in clinical practice in large prospective cohorts is warranted.


Assuntos
Ácidos Nucleicos Livres , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/genética , Estudos Prospectivos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Rim/patologia
2.
Cell Mol Life Sci ; 78(5): 2387-2404, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33090288

RESUMO

Increasing evidence shows that long non-coding RNAs (lncRNAs) play an important role in a variety of disorders including kidney diseases. It is well recognized that inflammation is the initial step of kidney injury and is largely mediated by nuclear factor Kappa B (NF-κB) signaling. We had previously identified lncRNA-Arid2-IR is an inflammatory lncRNA associated with NF-κB-mediated renal injury. In this study, we examined the regulatory mechanism through which Arid2-IR activates NF-κB signaling. We found that Arid2-IR was differentially expressed in response to various kidney injuries and was induced by transforming growth factor beta 1(TGF-ß1). Using RNA sequencing and luciferase assays, we found that Arid2-IR regulated the activity of NF-κB signal via NLRC5-dependent mechanism. Arid2-IR masked the promoter motifs of NLRC5 to inhibit its transcription. In addition, during inflammatory response, Filamin A (Flna) was increased and functioned to trap Arid2-IR in cytoplasm, thereby preventing its nuclear translocation and inhibition of NLRC5 transcription. Thus, lncRNA Arid2-IR mediates NF-κB-driven renal inflammation via a NLRC5-dependent mechanism and targeting Arid2-IR may be a novel therapeutic strategy for inflammatory diseases in general.


Assuntos
Inflamação/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Rim/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , Transcrição Gênica , Animais , Células Cultivadas , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Rim/patologia , Nefropatias/genética , Nefropatias/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Crescimento Transformador beta1/farmacologia
3.
J Cell Mol Med ; 25(4): 2052-2068, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33369170

RESUMO

Smad3 deficiency prevents the development of type 2 diabetic nephropathy; however, the underlying molecular mechanisms remain unknown. In this study, we aimed to identify Smad3-related genes involved in the pathogenesis of diabetic kidney disease. High-throughput RNA sequencing was performed to profile the whole transcriptome in the diabetic kidney of Smad3 WT-db/db, Smad3 KO-db/db, Smad3+/- db/db and their littermate control db/m mice at 20 weeks. The gene ontology, pathways and alternative splicing of differentially expressed protein-coding genes and long non-coding RNAs related to Smad3 in diabetic kidney were analysed. Compared to Smad3 WT-db/db mice, Smad3 KO-db/db mice exhibited an alteration of genes associated with RNA splicing and metabolism, whereas heterozygosity deletion of Smad3 (Smad3+/- db/db mice) significantly altered genes related to cell division and cell cycle. Notably, three protein-coding genes (Upk1b, Psca and Gdf15) and two lncRNAs (NONMMUG023520.2 and NONMMUG032975.2) were identified to be Smad3-dependent and to be associated with the development of diabetic nephropathy. By using whole transcriptome RNA sequencing, we identified novel Smad3 transcripts related to the development of diabetic nephropathy. Thus, targeting these transcripts may represent a novel and effective therapy for diabetic nephropathy.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/etiologia , Proteína Smad3/metabolismo , Transcriptoma , Processamento Alternativo , Animais , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genótipo , Camundongos , Camundongos Knockout , Análise de Sequência de RNA , Proteína Smad3/genética , Sequenciamento do Exoma
4.
BMC Nephrol ; 20(1): 336, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455266

RESUMO

BACKGROUND: Though the roles of microRNAs (miRNAs) in renal diseases have been extensively investigated, a thorough screening and comparison of miRNAs among different types of chronic kidney disease (CKD) has never been performed. METHODS: The intrarenal miRNAs were profiled from fresh kidney tissues of patients with biopsy-proven minimal change disease (MCD), focal segmental glomerular sclerosis (FSGS) and diabetic nephropathy (DN) by using microarray. Commonly dysregulated miRNAs were validated by real-time PCR using paraffin-embedded renal tissues from all three types of CKD patients as well as mouse unilateral ureteral obstruction (UUO) model. Two novel miRNAs were selected and annotations of their target genes were performed using GO and KEGG pathway enrichment analysis. Biological functions of three two candidate miRNAs were explored in TGF-ß1-induced cell model using human kidney proximal tubular cells (HK-2). RESULTS: The kidney biopsy samples of three disease types represent different levels of damage and fibrosis, which were the mildest in MCD, moderate in FSGS, and the most severe in DN. 116 miRNAs were identified to be commonly dysregulated, including 40 up-regulated and 76 down-regulated in CKD tissues as compared with healthy donor kidney biopsy tissues. Two novel miRNAs, hsa-miR-3607-3p and hsa-miR-4709-3p, were verified as consistently differentially expressed among all three types of patient samples as well as in mouse model. In vitro, hsa-miR-3607-3p was repressed while hsa-miR-4709-3p was induced by TGF-ß1 treatment. Inhibition of hsa-miR-3607-3p or overexpression of hsa-miR-4709-3p promoted TGF-ß1-induced migration and F-actin assembling in HK-2 cells, which are characteristics of epithelial-mesenchymal transition (EMT). Further study identified that ITGB8 and CALM3 were the bona fide target genes of hsa-miR-3607-3p and hsa-miR-4709-3p respectively. CONCLUSIONS: The present identify a unique miRNAs profile that probably relates to the common fibrosis process of CKD. Results of our study suggest that hsa-miR-3607-3p and hsa-miR-4709-3p may represent as promising therapeutic targets against kidney fibrosis.


Assuntos
MicroRNAs/biossíntese , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Adulto , Animais , Células Cultivadas , Feminino , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Pessoa de Meia-Idade , Insuficiência Renal Crônica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...